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A B S T R A C T

Decades of peer reviewed evidence demonstrate that: 1) Bordetella pertussis and pertussis toxin are potent adjuvants, inducing asthma and allergic sensitization in
animal models of human disease, 2) Bordetella pertussis often colonizes the human nasopharynx, and is well documented in highly pertussis-vaccinated populations
and 3) in children, a history of whooping cough increases the risk of asthma and allergic sensitization disease. We build on these observations with six case studies
and offer a pertussis-based explanation for the rapid rise in allergic disease in former East Germany following the fall of the Berlin Wall; the current asthma, peanut
allergy, and anaphylaxis epidemics in the United States; the correlation between the risk of asthma and gross national income per capita by country; the lower risk of
asthma and allergy in children raised on farms; and the reduced risk of atopy with increased family size and later sibling birth order. To organize the evidence for the
pertussis hypothesis, we apply the Bradford Hill criteria to the association between Bordetella pertussis and asthma and allergic sensitization disease. We propose that,
contrary to conventional wisdom that nasopharyngeal Bordetella pertussis colonizing infections are harmless, subclinical Bordetella pertussis colonization is an im-
portant cause of asthma and diseases of allergic sensitization.

Introduction

Asthma is a multifactorial heterogeneous disorder [1–4] with varied
pathophysiologic mechanisms, or endotypes [1,4–6], characterized by
reversible airway obstruction, airway inflammation, and associated
Th2-IgE mediated immunity in about half of patients [7,8]. Allergic
disease here refers to hypersensitivity initiated by a specific, typically
IgE-mediated, reaction to an environmental allergen, and includes
atopic dermatitis, allergic rhinitis, and food allergy [2,9]. Asthma and
allergic sensitization diseases are frequently comorbid [10,11], and the
atopic (IgE-mediated) allergic phenotype may progress over time in an
“atopic march.” [11–14]

Heritability estimates for asthma and allergic sensitization diseases
vary widely [15], and standard genome-wide association panels of
asthmatics account for less than half of common variation [16,17],
implicating the importance of environmental factors in disease onset.
For example, a consortium-based genome-wide association study esti-
mated the population attributable risk of the combined effect of all
asthma-associated loci identified for child-onset asthma at 38% (95% CI
28–44%) [18], and a large Australian twin study of self-reported
asthma and hay fever found respective disease correlation rates of .65
between monozygotic twins, and .25 between dizygotic twins [17],
further reflecting both genetic and environmental contributions to al-
lergic disease. As Berin and Sampson summarized for one allergy

epidemic, “Food allergies are increasing in prevalence at a higher rate
than can be explained by genetic factors, suggesting a role for as yet
unidentified environmental factors.“ [19]

Asthma and allergic sensitization share an overlapping medical lit-
erature grounded in a common pathophysiology and epidemiology, and
as we propose, may both be significantly attributable to the environ-
mental pathogen Bordetella pertussis (BP), particularly nasopharyngeal
Subclinical Bordetella pertussis Colonization (SCBPC) infections. SCBPC
is defined here as a BP infection that acutely causes minimal or no overt
clinical symptoms, and does not induce BP immunocompetence. An
SCBPC may initially be asymptomatic or mildly symptomatic, pre-
senting at most with non-specific symptoms such as those of a common
cold. As such, SCBPCs are unlikely to be specifically identified as BP
infections.

To the extent a host mounts an immune response to SCBPC, manifest
for example by a modest increase in BP-directed antibodies, such a
response is, by definition, insufficient to clinically prevent subsequent
BP infections. As a result of lower exposure dose or by lower frequency
of exposure, SCBPC, again by definition, does not lead to potent im-
munity. This lack of induction of a protective BP-directed host immune
response by an SCBPC infection is critical to our hypothesis, as it allows
for the unopposed biological activity of toxins secreted by BP colonizing
infections that may lead to future host pathology. The pertussis hy-
pothesis proposes that nasopharyngeal colonizing BP infections, SCBPC,
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while initially quiescent, may subsequently lead to diseases of allergy as
presented in this review, as well as to autoimmunity [20,21], and other
neuropathology [22].

In contrast, Subclinical BP Immunization, or SCBPI, is defined as a
BP infection that acutely causes minimal or no symptoms but never-
theless induces a protective mucosal and systemic BP immune response.
Such response is typically the result of a higher dose of BP exposure
and/or a higher frequency of BP exposure. We propose that because
SCBPI induces potent mucosal cellular and antibody responses against
BP and BP toxins, toxins released by subsequent nasopharyngeal colo-
nizing BP infections are neutralized prior to reaching cellular end-tar-
gets, including antigen presenting cells. As a result, SCBPIs generally do
not lead to the proposed allergic pathology that results from unopposed
BP toxins, such as those released by SCBPC. In addition, SCBPI-induced
mucosal BP immunocompetence generally leads to rapid clearance of
subsequent nasopharyngeal colonizing BP infections, further reducing
the risk of host exposure to unopposed BP toxins. In summary, as
proposed by the pertussis hypothesis, new-onset subclinical BP infec-
tions can be either SCBPC or SCBPI infections, depending on the fre-
quency and dose of BP exposure, and result in distinct immunologic
profiles and clinical implications as shown in Table 1.

The existence of subclinical BP infections is supported by human
data demonstrating nasopharyngeal BP PCR positivity in asymptomatic
populations [23–25], and data obtained during a pertussis outbreak
which identified a population of nasopharyngeal BP PCR positive sub-
jects without cough whose serology remained negative (e.g. IgA, IgG,
IgM) “due to a lack of a detectable BP immune response.” [26]. In ad-
dition, investigation of respiratory outbreaks attributed to BP have been
deemed to be “mistaken” by the CDC in part due to the presence of
nasopharyngeal BP PCR positive patients with negative BP serology
[27]. We submit that it is plausible that these are documented examples
of SCBPC.

SCBPC is proposed to occur more frequently in highly vaccinated
populations with low BP prevalence, and infrequent minimally im-
munogenic nasopharyngeal BP exposure. In contrast, subclinical BP
infections occurring in poorly vaccinated populations with high BP
prevalence, and high frequency immunogenic nasopharyngeal BP ex-
posure, are more typically SCBPI. What we define as SCBPI is also
known as latent BP immunization, first recognized in British BP studies
by Percy Stocks in the 1930s [28] and more recently supported by
Lavine, who, in an age-structured model, found that a reduction in la-
tent BP immunization can account for both the recent reemergence of
BP despite high BP vaccination coverage and the shift in age-specific BP
incidence in developed nations [29]. In our hypothesis, latently im-
munizing BP infections, or SCBPI, by inducing potent mucosal im-
munity, are proposed to reduce the risk and rate of future SCBPC in-
fections.

Asthma affects an estimated 300 million people worldwide [30].
With epidemic and rising prevalence in many developed nations during
the past three decades [31–34] (which may have recently leveled off in
some countries with higher rates of disease [3]), a deeper under-
standing of how and why certain individuals develop asthma and al-
lergic sensitization disease is more important than ever. Notably,
asthmatics are at increased risk for respiratory and other infections

including Bordetella pertussis [35,36], and show a trend (p=0.063) for
lower levels of anti-pertussis toxin IgG than non-asthmatics [36], con-
sistent with a relative BP immunodeficiency in asthmatics compared
with non-asthmatics, though immunosuppression from asthmatic
treatment may explain some of this finding. The higher rate of BP in
asthmatics may reflect genetic predisposition, airway remodeling with
structural pathology and obstruction, or environmental factors such as
lower levels of both BP exposure and latent BP immunization, resulting
in mucosal BP immunodeficiency and an increased risk of SCBPC. We
do not suggest that SCBPC is the only potential infectious cause of
asthma and diseases of allergic sensitization, but that the pertussis
hypothesis is consistent with current evidence and merits investigation.

The proposed pathogenic sensitizing agent Bordetella pertussis is a
highly transmissible, Gram-negative bacterium that is typically ac-
quired by inhalation of contaminated air from the cough, sneeze or
exhalation of an infected individual. BP is the primary cause of acute
clinical BP, better known as whooping cough, and BP secretes biolo-
gically active toxins, including the highly potent adjuvant pertussis
toxin. Importantly, BP and pertussis toxin have been used for more than
a half century to induce sensitization and pathology in multiple animal
models of asthma and allergic disease [37–54]. To illustrate the re-
lationship between BP infection and asthma and allergic sensitization,
we first apply our hypothesis to six environmental observations.

Case studies

Asthma, allergies and the rise and fall of the Berlin Wall

Prior to 1960, former East Germany (FEG) and former West
Germany (FWG) had similar rates of atopic disease [55]. In 1961 the
Berlin Wall was erected by FEG for geopolitical reasons, dividing Ger-
many and isolating populations with similar genetic backgrounds and
environments. It remained a prominent symbol of the cold war for
nearly three decades until its removal in 1989. While partitioned, the
two nations adopted sharply different BP vaccination policies, with FEG
maintaining high BP vaccination rates and FWG rescinding their uni-
form childhood BP vaccination policy from 1974 to 1991 due to vaccine
safety concerns [56].

During the 1980s, pertussis vaccination coverage for pre-school
children was greater than 90% in FEG, but only 50–60% in southern
FWG, and 2–20% in northern FWG [56]. Consequently, BP rates in FWG
increased during the period of Germany’s separation and remained
substantially higher in FWG than in FEG [57]. In addition, in FEG,
travel and immigration were severely restricted, limiting importation of
BP to an isolated FEG population. With the fall of the Berlin Wall in
1989 and subsequent German reunification, including a marked in-
crease in socialization between FEG and FWG populations, BP rates in
FEG began to rise [56,58] as shown in Table 2.

Reported rates of mortality from all bacterial disease in East
Germany were unchanged from 1980 to 1997, so it is unlikely that
reporting bias explains the rise in BP incidence during this period [60].

We propose that these circumstances, while successful in reducing
acute clinical BP rates in FEG during separation, simultaneously atte-
nuated mucosal BP immunity within the FEG population prior to 1989

Table 1
Proposed Characteristics of SCBPC and SCBPI Nasopharyngeal Subclinical BP Infections.

Subclinical* BP Infection
(initial presentation)

Dose and Frequency
of BP Exposure

More Common In Induces Potent Mucosal
and Systemic BP
Immunity

Reduces the Risk of Future
Nasopharyngeal Colonization

Reduces the Risk of Future
Disease Due to Unopposed BP
Toxins

SCBPC (Subclinical BP
Colonization)

Low Highly Vaccinated
Populations

No No No

SCBPI (Subclinical BP
Immunization)

High Poorly Vaccinated
Populations

Yes Yes Yes

*A subclinical BP infection is defined as an asymptomatic or minimally symptomatic infection, at most leading to symptoms consistent with the common cold.
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because whole cell pertussis vaccines (in use in FEG and FWG from
1961 to 1989) do not induce sterilizing mucosal immunity as demon-
strated in non-human primates [61], and exposure to BP in FEG was
infrequent, leading to low rates of latent BP immunization. This FEG
population–wide mucosal BP immunodeficiency was inconsequential
while BP rates remained low in FEG prior to German reunification, and
exposure to BP in FEG was infrequent. However, we propose that mu-
cosal BP immunodeficiency predisposed former East Germans to in-
creased SCBPC rates post-reunification, as exposure to BP increased
with sharp increases in FEG-FWG population interactions and the influx
of BP into FEG. We submit that an increased incidence of nasophar-
yngeal SCBPC increased the risk for asthma and related allergic disease
in post-unification FEG.

Consistent with the pertussis hypothesis, rates of allergic sensitiza-
tion and asthma were low in FEG up to reunification [62,63] and
substantially increased after the fall of the Berlin wall in 1989. Heinrich
et al. analyzed data obtained in 1992–3, 1995–6 and 1998–9 from East
German children aged 5–14 years [64]. After adjustment for gender,
age, and study area, increases were seen for strong sensitization to any
allergen with an odds ratio of 1.28 for the second vs. first survey disease
increase, and 1.33 for the third vs. first survey disease increase (p-trend
0.02). For example, from 1992 to 1995 to 1999, rates for any allergy to
food, drug, pollen, animal dander or fungus rose progressively from

13.7% to 19.6% to 24.3%, and physician-diagnosed asthma rates rose
from 2.6% to 3.5% to 4.8%. Statistically significant increases were also
reported for clinically diagnosed asthma and eczema [64].

From another region of FEG, Frye et al. reported childhood asthma
and allergy rates from 1992 to 1996 [65]. Bronchial hyperresponsive-
ness to cold air on pulmonary function testing corroborated Heinrich’s
findings, increasing from 6.4% in 1992–1993 to 11.6% in 1995–1996
(odds ratio [OR]: 2.0, 95% confidence interval [CI] 1.3–3.0). In addi-
tion, in the decade following reunification, there was a fourfold greater
increase in pollen sensitization (95% confidence interval 1.2–13.9) in
FEG than in FWG [66].

We propose that high vaccination rates and social isolation sup-
pressed BP prevalence in FEG and thereby reduced both latent BP im-
munization and mucosal BP immunocompetence in the FEG population.
This, in turn, increased the risk of SCBPC in FEG individuals upon
German reunification as BP was reintroduced into FEG from exposure to
the more poorly vaccinated FWG population. We submit that, given the
totality of evidence presented in this review, SCBPC is an unrecognized
cause of both asthma and allergic sensitization, and that an increase in
FWG-transmitted BP and FEG-acquired SCBPC infections is consistent
with the significant rise in asthma and allergic disease in FEG after the
fall of the Berlin Wall.

The asthma epidemic in the United States parallels the surge in
Bordetella pertussis incidence

In recent decades, the incidence of asthma in the United States (US)
has increased [31,67,68], correlating with the steady increase in BP
incidence as tracked by the US Centers for Disease Control and

Table 2
The Rise in BP Incidence in FEG after the Fall of the Berlin Wall [56,57,59]

Former East Germany 1980s 1994 2000 2007

Estimated Whooping Cough cases/100,000/year < 1 3.4 20.5 39.3

Fig. 1. Estimated annual incidence of US childhood asthma and BP, 1980–2007. Estimated annual incidence of asthma for at-risk US children (< 18 years) from 1980
to 2007 (faded dotted line) with linear trend line (solid dotted line), and estimated annual incidence of unreported US subclinical BP from 1976 to 2012 (solid faded
line) with an interpolated fifth degree polynomial trendline (solid red line). Data for estimated annual incidence of asthma for at-risk US children from 1980 to 2007
from Rudd, 2007 [67] and Winer, 2012 [68]. The US child asthma incidence for 2006–2008 is pooled to a single 2007 incidence rate because different states
participated in the survey from year to year [68]. Data for estimated annual subclinical BP prevalence from Ward, 2005 [71], WHO vaccine-preventable diseases:
monitoring system, 2009 global summary (http://apps.who.int/iris/bitstream/10665/70149/1/WHO_IVB_2009_eng.pdf), and Centers for Disease Control and
Prevention (CDC) Surveillance and Reporting, 2013 (https://www.cdc.gov/pertussis/surv-reporting/cases-by-year.html). In the US acellular BP vaccine trial com-
pleted in 1999, rates of undiagnosed BP infections for individuals age 15–65 years were estimated at 1 to 10 million cases per year, depending on case definition [71],
in years when the CDC reported approximately 7000 US cases annually (https://www.cdc.gov/pertussis/surv-reporting/cases-by-year.html). The estimated un-
reported subclinical BP incidence in the figure is based on the quotient of these data, with an upper range ratio of 1:1400 for reported BP to unreported subclinical BP
for a given year.
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Prevention (http://www.cdc.gov/pertussis/surv-reporting/cases-by-
year.html). We submit that symptomatic BP infection rates are di-
rectly proportional to subclinical BP infection rates in relatively low BP
incidence environments such as the US during the past several decades,
when BP exposure levels are held to have been too low to induce
widespread latent induction of BP mucosal immunity. That is, in po-
pulations where circulating rates of BP are low and mucosal BP im-
munocompetence is poor, such as that in the US with greater than 90%
BP vaccination rates for decades (http://apps.who.int/immunization_
monitoring/globalsummary/countries?countrycriteria%5Bcountry%5D
%5B%5D=USA), increasing rates of acute clinical BP correlate with
increasing rates of SCBPC because each additional BP exposure is more
likely to lead to an SCBPC. In contrast, in populations with poor vac-
cination rates and high rates of circulating BP, increasing acute clinical
BP incidence correlates with an increasing rate of latent BP im-
munization and enhanced mucosal BP immunity, and thus a reduction
in SCBPC rates.

As seen in Fig. 1, US rates of both asthma [67,68] and estimated
SCBPC begin to rise in the 1990s as derived from WHO data (http://
apps.who.int/iris/bitstream/10665/70149/1/WHO_IVB_2009_eng.
pdf), coincident with the introduction of the acellular BP (aP) vaccine
[69] which has been shown to provide less durable immunity than
whole cell BP (wP) vaccines [70]. Notably, non-human primate models
demonstrate that neither wP nor aP vaccination induces sterilizing
nasopharyngeal BP immunity or prevents colonization (in fact aPV
prolongs BP colonization), and further that aP does not prevent BP
transmission [61]. In addition, human nasal swab PCR, culture and
serologic data indicate that currently available BP vaccines decrease
acute clinical BP risk but do not prevent asymptomatic or minimally
symptomatic nasopharyngeal BP infection as demonstrated in multiple
highly BP-vaccinated populations [23–26,71–74]. Human observa-
tional [75,76] and modeling data [77] also suggest that aP vaccines do
not prevent BP transmission. Evidence substantiating the existence of
SCBPC, as defined by the pertussis hypothesis, includes Klement et al.
who identified a population of nasopharyngeal BP PCR positive subjects
without cough whose BP serology remained negative (e.g. IgA, IgG,
IgM) [26], and Zhang et al. who documented BP PCR positivity in 4.8%
of Chinese children. In the Zhang et al. study, “All children were
asymptomatic when they entered the study. Children who reported
symptoms of a respiratory infection such as cough, fever, or catarrh,
currently present or having occurred in the past 3months, were ex-
cluded.” [23] Such BP colonized patients meet our definition of SCBPC,
which may include subjects who may have had minor respiratory
symptoms that were not reported to investigators.

We propose that the inability of aPV to prevent asymptomatic na-
sopharyngeal BP colonization has contributed to the rise in acute
clinical BP and SCBPC in highly BP-vaccinated populations where rates
of latent BP immunization are relatively low. In turn, we submit that it
is plausible that the adjuvant effects of pertussis toxin secreted from
SCBPC, when co-localized with allergens such as pollen and certain
foods, explains a significant part of the coincident rise in rates of per-
tussis and diseases of allergic sensitization, as exemplified in Fig. 1.

Of note, average estimated rates of US SCBPC of 2–7% since 2000
(20/1000 in 2000, 70/1000 in 2013), derived from Ward et al. and
presented in Fig. 1, were based on asymptomatic cases of serologically
documented BP infection. These estimates approximate rates of naso-
pharyngeal PCR positivity in other highly vaccinated populations such
as 4.8% of asymptomatic youth in China in 2014 [23], and 5.3% of
infants in the control group of a German infant study in 1995–1997
[24].

The US rise in childhood peanut allergy and anaphylaxis parallels
increasing US BP rates

Beyond asthma, the prevalence of other diseases of allergic sensi-
tization, including peanut allergy [78] and anaphylaxis [79], is

climbing in step with the US rise in BP rates as documented by the CDC
(http://www.cdc.gov/pertussis/surv-reporting/cases-by-year.html).
Peanuts are commonly consumed as peanut butter, which persists in the
oropharynx due to a combination of biochemical properties that confer
its distinctive stickiness, and, as proposed herein, make it an ideal al-
lergen by increasing its co-localization with colonizing pharyngeal BP
infection and pertussis toxin adjuvant, increasing the risk of BP-medi-
ated peanut sensitization. Peanut butter’s high fat content makes it
hydrophobic, which impairs mixing with, and being washed away by,
saliva, while commercial processing increases its adhesiveness [80]
compared with unprocessed peanuts. We submit that these unusual
properties offer an explanation for why childhood peanut allergy,
among all food allergies, has sharply risen in recent decades [78]
commensurate with rising US BP infection rates (http://www.cdc.gov/
pertussis/surv-reporting/cases-by-year.html), and the presence of BP in
the nasopharynx in about 5% of children in highly vaccinated popula-
tions [23,24].

Sicherer et al. documented self-reported US peanut allergy pre-
valence rates, conducting three identical nationwide cross-sectional
surveys at 5–6 year intervals. Survey-based prevalence rates more than
tripled over 11 years of follow-up, rising from 0.4% in 1997, to 0.8% in
2002, to 1.4% in 2008 (p < .0001 for difference, 1997–2008) [78].
Rates of tree nut allergy rose as well during the same period, increasing
from 0.2% in 1997 to 1.1% in 2008 (p < .0001). While the authors
acknowledge the limitations of survey-based allergy self-report, they
note that contemporaneous rates of peanut allergy in children outside
the US were similar to their US 2008 estimate of 1.4%, with rates in
Canada of 1.63% [81], in the United Kingdom of 1.2–1.85% [82,83],
and in Australia of 1.15% [84], where studies relied on additional
means of allergy validation including physician diagnosis, allergy
testing, and food challenge.

Recent decades have also witnessed an increase in US anaphylaxis
rates. Lin et al. reported a greater than four-fold jump in hospitaliza-
tions for anaphylaxis between 1990 and 2006 in New York re-
sidents< 20 years of age [79]. As might be expected, peanut allergy
was the most common reason for food allergy anaphylaxis hospital
admission, followed by “other specified foods”, tree nuts/seeds, fish and
milk. In addition, the population incidence of anaphylaxis in Rochester,
Minnesota increased from 46.9/100,000 persons to 58.9/100,000
(p= .03) between 1990 and 2000 [85].

Consistent with these findings, BP has been shown to “precipitate/
enhance anaphylactic response capacity” in mammals [86]. For dec-
ades, animal models have demonstrated that pertussis toxin and ad-
ministered BP possess “well-known anaphylactogenic effect[s]” with
the ability “to increase anaphylactic susceptibility of mice to a foreign
antigen” [38]. Co-administration of BP and antigen can lead to ana-
phylaxis upon re-exposure to that antigen [87], and pertussis toxin,
when co-administered with an antigen, can lead to an immediate type
hypersensitivity reaction consistent with anaphylaxis upon antigen re-
exposure [39].

Notably, pertussis toxin can also cause “drastic histological and
histochemical changes” within the adrenal gland [88] of rats five days
after injection with pertussis toxin, and more than a half-century ago
Munoz noted “striking similarities between adrenalectomized and
pertussis-treated mice [which] have led to the inference that pertussis…
interfere[s] with adrenal function.” [89] While further clinical study is
needed, it is tempting to speculate that SCBPC-mediated impairment of
adrenal function (due to SCBPC-secreted pertussis toxin localizing to
the adrenal gland via a hematogenous route), combined with naso-
pharyngeal SCBPC-mediated host sensitization to peanut or other an-
tigens could result in host anaphylaxis upon antigen re-exposure. That
is, BP can not only induce host sensitization to an allergen via its in-
herent potent adjuvant effects, but BP can also lead to adrenal injury,
compromising adrenergic production and release of epinephrine, a
major anti-inflammatory mediator and vasoconstricting counter-reg-
ulatory hormone produced during a hyperimmune crisis which may
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include circulatory collapse. That first line therapy for anaphylaxis to a
sensitized antigen is the administration of exogenous epinephrine from
a portable epinephrine auto-injector, is consistent with BP-mediated
adrenal injury, suboptimal production and release of endogenous epi-
nephrine, and the pertussis hypothesis.

Asthma and gross national income per capita (GNI) of country of
birth

Rates of asthma and allergic sensitization tend to be lowest in the
world’s least developed nations [90,91], where vaccination coverage
has historically lagged and BP incidence is relatively high [57,92] (and
from the WHO: http://apps.who.int/immunization_monitoring/
globalsummary/countries?countrycriteria%5Bcountry%5D%5B%5D=
USA). A positive correlation between high economic status, as reflected
by gross national product, and several allergic diseases, including
asthma and atopy, has also been noted across the globe [91,93]. In
addition, the CDC has reported that rates of pertussis vaccination are
also directly proportional to GNI by successive quartile [94].

We propose that in low BP vaccination rate/high BP incidence na-
tions with lower GNIs, increased frequency and degree of BP exposure
and increased rates of community acquired latent BP immunization,
SCBPI, tend to be high. High latent immunization rates in turn lead to
potent mucosal BP immunity, reduced susceptibility to SCBPC, and
reduced rates of SCBPC, asthma and related allergic disease.
Conversely, we suggest that in highly BP vaccinated nations where GNI
tends to be higher, reduced frequency and degree of BP exposure leads
to lower rates of latent BP immunization, SCBPI, higher rates of mu-
cosal BP immunodeficiency, greater susceptibility to SCBPC, and ulti-
mately to higher rates of SCBPC, asthma and diseases of allergic sen-
sitization. Importantly, while countries with higher GNI tend to have
higher BP vaccination rates, wP and aP vaccines do not induce potent
mucosal immunity [61] and so are not held to reduce SCBPC risk.

The potential importance of mucosal BP immunity in the etiology of
asthma and allergic sensitization is supported by data on the risk of
these diseases in those who relocate to an environment with a different
rate of endemic BP exposure. Chang and Kelvin have shown that for
immigrants, the risk of asthma persists in proportion to the duration
one remains in the country of origin [95]. Cross sectional survey data
from 2009 from immigrants to New York City in the US indicate that
the risk of asthma is lowest for those born in nations with a lower GNI,
and rises with GNI of the country of origin [95]. Differences are clini-
cally meaningful with asthma rates of 14% in those born in high GNI
countries, 7% for those born in middle GNI countries, and 3.7% for
those born in lower GNI countries (p < 0.001). After adjusting for
more than a dozen potential confounding variables, differences re-
mained statistically significant (p < .001). Consistent with these ob-
servations, the CDC has reported that higher rates of BP vaccination are
directly proportional to GNI with the top quartile of nations achieving
98% administration of three doses of diphtheria tetanus pertussis vac-
cination (DTP3), the upper middle GNI quartile achieving 70% DTP3
rates, the lower middle quartile achieving 44% DTP3 rates, and the
lowest quartile achieving 26% DPT3 rates [94].

Immigrants from low GNI countries who lived in the US for
5–9 years have a lower risk of asthma than those who lived in the US for
more than 10 years (OR=0.18, p=0.02), consistent with the idea that
a marked reduction in latent BP immunization enables the waning of
mucosal BP immunity over time, commensurately increasing the risk
and rate of SCBPC and allergic diseases such as asthma. These data,
derived with a single methodology from immigrants to a single city,
eliminate some of the ascertainment limitations and biases in studies
spanning multiple countries.

Taken together, these data associate both the risk for asthma and
the risk for pertussis (the latter inversely proportional to BP vaccination
rate), with GNI by quartile. That is, since higher rates of BP vaccination
are associated with higher GNI, and higher rates of BP vaccination are

associated with lower rates of SCBPI and higher rates of SCBPC, we
suggest that the asthma risk for country of origin GNI in Chang and
Kelvin is a direct result, on a population level, of SCBPI and SCBPC rates
in the country of origin.

Children raised on farms and in homes with pets have lower rates
of asthma and allergic disease

In studies around the world, including North America, Europe, and
Australia, growing up on a farm reduces the risk of asthma and allergic
disease, lowering asthma risk by 30–50%, and early farm life is also
associated with lower levels of IgE antibodies indicative of atopy
[96–98]. In two large cross-sectional studies, children raised on farms
were exposed to a greater variety of microorganisms than non-farm
raised children, and exposure to Gram-negative rods reduced the odds
ratio of atopy to 0.45 (95% CI, 0.27–0.76, p=0.0003) [99]. An ac-
companying editorial noted, “Remarkably, atopy, which had the
strongest inverse relationship with farm residence, was associated only
with the broad category of “gram-negative rods” [96].

An inverse relationship has also been observed between exposure to
endotoxin, a cell wall component of Gram-negative bacteria, and
asthma, hay fever, and atopic sensitization [100]. More recently, a
study comparing Amish and Hutterite children reported that prevalence
rates of asthma and allergic sensitization were 4 and 6 times lower in
the Amish, while LPS endotoxin (i.e., lipopolysaccharide from Gram-
negative bacterial cell walls) levels in home dust samples were 6.8
times higher in Amish homes [101]. While the Amish and Hutterites are
of similar European origin and lifestyle, including reproductive isola-
tion, the Amish maintain traditional farming practices with small
single-family farms “where children are reared in close proximity to
farm animals and their sheds”, whereas Hutterites have adopted large-
scale and highly industrialized practices [102], and “young Hutterite
children typically do not spend time near farm animals or in the barns,
which are much larger and located at much greater distances from their
homes than are Amish barns” [103]. This study further demonstrated
that in an adjuvant-mediated mouse model of allergic asthma, in-
tranasal instillation of dust extracts from Amish, but not Hutterite,
homes inhibited airway hyperreactivity and eosinophilia in wild type
mice, but not in mice with compromised innate immunity [101], im-
plicating the endotoxin-rich Amish environment as having a protective
role in allergic asthma. Notably, Hutterite barn dust extract did inhibit
airway hyperreactivity, bronchiolar lavage eosinophilia and house-dust
mite-specific IgE as effectively as Amish barn-dust extract, suggesting
that “an environment with robust asthma-protective properties appears
to exist within the Hutterite colonies, but Hutterite children are not
exposed to this environment in early life” [103].

Similarly, children raised in homes with pets such as cats and dogs
are less likely to develop atopic disease [104–109] and asthma
[108–111]. For example, current dog contact is inversely associated
with hay fever (OR 0.26, 95% CI 0.1–0.57), asthma (OR 0.29 95% CI
0.12–0.71) and sensitization to cat allergen and grass pollen [108]. A
prospective birth cohort study in Michigan demonstrated that “Ex-
posure to 2 or more dogs or cats in the first year of life may reduce
subsequent risk of allergic sensitization to multiple allergens during
childhood” [105]. A literature review noted that while “findings have
not been duplicated in all studies…data from recent years has shown
that pet exposure in early childhood may actually prevent the devel-
opment of allergic sensitization and allergic diseases including allergic
rhinitis, asthma, and atopic dermatitis” [109]. Notably, a recent study
of the microbiota of families and their pets showed that “humans tend
to share more microbes with individuals, including their pets, with
which they are in frequent contact” [112], increasing the likelihood of
human exposure to B. bronchiseptica, a Gram-negative rod bacterium,
and close relative of BP.

While induction of innate immunity by endotoxin may play a role in
the protective effects of farm living and pet ownership on asthma and

K. Rubin, S. Glazer Medical Hypotheses 120 (2018) xxx–xxx

5

http://apps.who.int/immunization_monitoring/globalsummary/countries?countrycriteria%5Bcountry%5D%5B%5D=USA
http://apps.who.int/immunization_monitoring/globalsummary/countries?countrycriteria%5Bcountry%5D%5B%5D=USA
http://apps.who.int/immunization_monitoring/globalsummary/countries?countrycriteria%5Bcountry%5D%5B%5D=USA


allergic disease, an alternative explanation is that protective endotoxin
exposure effects are but one aspect of the primary protective role of
Bordetella bronchiseptica in the prevention of BP-mediated asthma and
allergic disease in humans. B. bronchiseptica does not secrete the ad-
juvant pertussis toxin [113] and so is not expected to induce diseases of
allergic sensitization, however B. bronchiseptica is a highly contagious
respiratory pathogen that is better known to cause “kennel cough” in
dogs and cats [114] and atrophic rhinitis in pigs [115].

Evidence supporting the role of B. bronchiseptica in reducing BP-
mediated asthma and allergies includes the following: 1) B. bronchi-
septica, a Gram-negative bacterium that synthesizes LPS endotoxin, is
well known to infect domesticated and farm mammals such as dogs,
cats, pigs, cows, sheep and horses [116,117], 2) B. bronchiseptica and BP
share a close genetic relationship [118] and several key virulence fac-
tors including filamentous haemagglutinin (FHA) [119], pertactin
[120], dermonecrotic toxin [121], and lipopolysaccharide [114], 3)
living on a farm and having household animals increases human ex-
posure to B. bronchiseptica as these infections are common in animals,
e.g., 18.6% of lung samples from pigs with respiratory disease [122]
and 10% of cats [114] test positive for B. bronchiseptica, 4) although not
a primary host, and investigations are limited, humans can be infected
and colonized by B. bronchiseptica [114,123–125], usually as a result of
contact with animals [123,126], and perhaps most importantly, 5) by
stimulating host TLR4 mucosal responses, B. bronchiseptica endotoxin
“protects against Bordetella pertussis colonization” in rodents [127].

The pertussis hypothesis holds that given that BP exposure protects
against B. bronchiseptica infection in mice [120], that B. bronchiseptica
LPS endotoxin protects against BP colonization in mice [127], and
given the substantial overlap in key virulence factors [119] and cross
protection conferred by antigens such as FHA and pertactin [120], it is
plausible and probable that B. bronchiseptica exposure reduces the risk
of human BP infection, and SCBPC infections in particular. In summary,
we propose that B. bronchiseptica transmitted from B. bronchiseptica-
infected pets and farm animals to humans provides latent immuniza-
tion, induces protective nasopharyngeal mucosal immunity to shared
Bordetella virulence factors, and thereby reduces SCBPCs and BP-
mediated asthma and allergic disease.

The hygiene hypothesis revisited: The inverse relationship
between allergic disease and both family size and birth order is
consistent with SCBPC risk

In 1989 Strachan proposed that atopic diseases such as hay fever,
asthma and childhood eczema could possibly “…be explained if allergic
diseases were prevented by infection in early childhood, transmitted by
unhygienic contact with older siblings.” [128] The hypothesis that early
childhood infections protect individuals from allergic disease has come
to be known as the hygiene hypothesis. Strachan initially supported this
premise by noting the inverse correlation between both family size and
sibling birth order with the risk for atopic disease [128]. Subsequently,
multiple other investigators have found similar decreases in risk for
asthma and atopic disease in those with a greater number of siblings
[129–131].

Rather than protection from allergic disease conferred by an in-
creased number of unspecified infections in those with larger families
and a greater number of older siblings, we note that specifically,
childhood BP exposure increases with both family size [132] and later
rank in birth order (having more older siblings) [133]. In the pre-vac-
cine era, such increased BP exposure in families was noted to protect
children from subsequent clinical BP infection [134,135]. In 1933,
Stocks proposed to explain this unexpected observation “by the greater
immunization of children by subclinical infections where the popula-
tion is denser,” coining the term “latent immunization.” [28] We pro-
pose that recurrent BP exposure from older siblings leads to latent BP
immunization and increased mucosal BP immunity, thereby reducing
the risk of SCBPC, which in turn decreases the risk of asthma and atopic

disease.
The hypothesis that recurrent, often subclinical, BP infections in-

duce latent BP immunization which in turn reduces allergy risk is
supported by studies of BP transmission and immunity within families
demonstrating that (1) BP is highly infectious within households
[76,135], with 80–90% attack rates for exposed non-immune contacts
[136], (2) two-thirds of BP infections transmitted within households are
transient and subclinical [76], and (3) household BP transmission in-
duces effective immunity to acute clinical BP, and may do so through
subclinical infections which confer “latent immunity” [28,76,135].
Given these data, we propose that recurrent childhood BP exposure in
larger families proportionately reduces the risk for SCBPC, and thus the
risk for co-localization of allergens with SCBPC, which in turn reduces
the risk for asthma and related allergic disease. We suggest that an
alternate explanation for Strachan’s observations is that members of
larger families and later born siblings gain protection from allergic
disease through latent BP immunization which confers a decreased risk
for SCBPC, thus lowering asthma and atopy risk.

In sum, high BP transmissibility and induction of latent BP im-
munity through repeated BP exposures offers a more specific alternative
explanation for the epidemiologic associations for atopic risk observed
by Strachan. Given the breadth of the evidence presented in this review,
including the unusual ability of BP and pertussis toxin to induce asthma
and allergic disease in multiple animal models [41–44], we propose
that the inverse association between allergic disease and both family
size and sibling rank, previously attributed to the hygiene hypothesis, is
better and more precisely explained by the pertussis hypothesis.

Assessing causation of SCBPC in asthma and allergic sensitization
with the Bradford Hill guidelines

To asses causation from observational data without the benefit of
randomized controlled trials, Hill offered several features of an asso-
ciation to weigh when making a judgment on potential causation, in-
cluding strength, consistency, specificity, temporality, biological gra-
dient, plausibility, coherence, experiment, and analogy [137]. Hill’s
construct is used to organize our analysis of the evidence for SCBPC as a
cause of asthma and allergic sensitization, and draws from the case
studies presented and biologic data from the medical literature.

Strength: The association corresponds with an increased relative
risk (RR) of disease in those with the associated risk factor
compared with those without

In a 1990s Swedish BP vaccine trial measuring the incidence of
childhood asthma over time, the RR of asthma by age 2.5 years of age
was 2.1 for those with a history of BP compared to those without (ab-
solute risk 19% vs. 9%, p= .03) [138]. It is possible that bronchial
hyperreactivity after pertussis infection confounded asthma diagnosis
and biased detection of asthma. However, we propose that beyond
SCBPC-induced asthma by nasopharyngeal antigen sensitization and
respiratory antigen exposure, acute clinical BP may be a direct cause of
asthma in a minority of acute clinical BP cases, with infants and young
children at greatest risk of acute clinical BP-mediated asthma.

Lung development is dynamic and most rapid in this age group, and
likely more susceptible to structural aberration and long term pul-
monary pathology (see plausibility section below regarding BP and BP
toxins in pulmonary remodeling) than fully developed airways (which
remain susceptible to pathology from BP-mediated antigen sensitization
and hyperimmune responses upon antigen re-exposure as reviewed in
Figs. 2 and 3). Further consistent with this perspective, while a con-
firmed asthma diagnosis was not made, a cohort of children in the
Netherlands with laboratory-confirmed acute clinical BP before six
months of age was found to have a RR of 2.8 (95% CI: 1.1–7.0) for
asthma symptoms between the ages of 1–3 years, compared with pre-
viously BP-uninfected children [139].
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We emphasize that these data correlate asthma risk with docu-
mented BP infection, not a history of BP vaccination. Given the inability
of currently available pertussis vaccines to prevent SCBPC and trans-
mission, and the proposed critical role of SCBPC in the etiology of
asthma and allergies, it is not surprising that there has been no credible
direct relationship established between BP vaccination history and the
development of asthma and allergic sensitization [140–142]. Anec-
dotes, uncontrolled studies, and stories on the internet and in news
media suggesting that vaccines directly cause asthma and allergic dis-
ease have been shown to be flawed, as reviewed by Offit and Hackett
[142], who further showed that well-controlled large epidemiologic
studies substantiate no causal relationship.

Consistency: The association persists across populations and
circumstances such as location and time

Consistency across human studies

The association between BP and asthma is supported in multiple
study designs, regions, and times. Beyond the BP vaccine trial from
Sweden demonstrating an increased incidence of asthma in children
with a verified history of whooping cough compared with those without
(19% vs. 9%, p= .03) [138], cross-sectional surveys from Turkey in
1997 and 2004 [143] demonstrate significantly higher reported rates of
allergy in those with a history of BP vs. those with no history of BP
(1997: 22.3% vs. 6.6%, p= .001) and (2004: 8.8% vs. 4.5%, p= .035),
and higher rates of asthma (1997: 37.6% vs. 7.4%, p= .001) and
(2004: 26.2% vs. 5.0%, p= .001) in the first and second surveys, re-
spectively. Further, while it is possible that some whooping cough was
misdiagnosed as asthma [144], a cohort study from the Netherlands in
2009 reported that toddlers with a history of laboratory confirmed
pertussis were more likely to have reported asthma symptoms (obtained
with a questionnaire adapted from the International Study of Asthma
and Allergies in Childhood) than age-matched controls (RR 2.8, 95% CI
1.1–7.0) [139]. A British national cohort study following over 8,800
children born in 1958 similarly found an increased risk of asthma in
those with a history of whooping cough (RR 1.2–1.4, varying with age
at the time of infection, p < .001) [145].

We note the observations of prior generations of physicians sug-
gesting a relationship between childhood acute clinical BP and both
asthma and allergies, including Heaton in 1933 (“asthma may be in-
itiated by whooping-cough”) [146], Stevenet in 1961 (“whooping
cough appears to be an important factor in the formation of hyper-
secreting respiratory allergies of the child”) [147], and notably, the
American Academy of Pediatrics in 1937 (“pertussis in children is often
followed by asthma”) [148]. Additionally, over 60 years ago, Feingold
cited six pre-vaccine era publications linking BP to asthma, summar-
izing what appears to have been a generally accepted association:
“Practically every modern text on either pediatrics or allergy cites the
infectious processes as precursors in the onset of asthma and empha-
sizes the frequency of pertussis as an exciting agent.” [149]

Consistency across animal models of asthma

In multiple preclinical studies, whole killed BP [41,42,46] and
pertussis toxin [43,44] have been co-administered with inhaled aller-
gens including ovalbumin [47,48], albumin [49] and dust mite [42,50]
(an important human asthmatic allergen) to produce BP-mediated
sensitization models of asthma. Controlled studies have quantified BP-
induced biologic responses consistent with asthma pathology across
multiple dimensions, including bronchial hyperresponsiveness
[41,47,50], broncho-alveolar lavage (BAL) allergen-specific IgE [42],
BAL eosinophilia [42,46], and BAL IL-4 and IL-13 [50], with BP and
pertussis toxin inducing and exacerbating hallmark pathologies of
asthma.

In a study using intranasal wild-type BP and pertussis toxin deficient

BP to evaluate the impact of pertussis toxin, not only was the presence
of pertussis toxin “associated with exacerbated host airway responses
during peak B. pertussis infection” but also pertussis toxin “…inhibit[ed]
host mechanisms of attenuating and resolving inflammation in the
airways,” [43] consistent with pathologic airway inflammation ob-
served in asthma.

As noted by Krug and Rabe, “Most animal models do not naturally
and spontaneously develop asthma. Therefore an allergic asthmatic
reaction has to be artificially induced by active immunization, using
adjuvants like…Bordetella pertussis.” [51]

Temporality: The cause precedes the effect

Temporality and human data

Hill’s principle of temporality in assessing causation is supported by
multiple epidemiologic observations. The highly BP-vaccinated FEG
population of the late 1980s, with its low BP incidence, low rate of
latent BP immunization, and proposed weak mucosal BP immunity,
experienced a sudden rise in BP exposure after German reunification in
1990. Rates of asthma and allergic sensitization disease in FEG likewise
climbed after the fall of the Berlin Wall, following an increase in BP
exposure in FEG due to both a reduction in BP vaccination rates [56]
and socialization with the higher BP incidence population of FWG –
ultimately leading to the proposed commensurate rise of SCBPC in FEG.

In the United Kingdom, the National Cohort Study tracking over
8800 children reported that the risk of developing asthma or wheezing
between the ages of 11 and 16 was significantly increased in those with
a history of whooping cough (RR 1.2–1.4, varying with age at the time
of infection, p < .001) [145]. We acknowledge that because whooping
cough and asthma may bias the other’s diagnosis, confounding is pos-
sible.

Temporality is further supported by the previously noted cohort
studies in the Netherlands and Sweden wherein an increased risk of
asthma symptoms followed BP infection in the first 6 months of life
[139] and first 2.5 years of life [138], respectively. While acute clinical
BP during infancy or early childhood may cause a subset of asthma due
to structural anatomic injury to rapidly developing lungs (see plausi-
bility section on BP and BP toxins in pulmonary remodeling), we pro-
pose that the majority of BP-mediated asthma results from intranasal
mucosal sensitization to a variety of antigens via co-localization with
subclinical BP colonizing infections, and subsequent pulmonary pa-
thology from hyperimmune responses to these antigens when they are
inhaled into the airways and localize to bronchi and bronchioles.

Beyond human temporal evidence, multiple preclinical studies have
utilized BP or pertussis toxin as an adjuvant to induce asthma and al-
lergic sensitization. In these animal studies, BP exposure precedes al-
lergic disease [41,42,45,46,52,53].

Biological gradient: The association has a positive dose-response
relationship

In East Germany during the 1990s, the risk of asthma and allergic
sensitization disease increased with the risk of SCBPC. Note in Table 2
the rise in estimated annual BP cases/100,000 from <1 in the 1980s,
to 3.4 in 1994, to 20.5 in 2000, commensurate with allergy rates to
various food and environmental allergens in East German children,
which increased significantly from 13.7% in 1992–3, to 19.6% in
1995–6, to 24.3% in in 1998–9 [64]. Corresponding asthma rates were
2.6%, 3.5% and 4.8%, also a significant progressive rise (p values for
each successive rise < .001).

A biologic gradient between estimated subclinical BP infection and
asthma in the US from 1980 to 2007 is also evident (see Fig. 1).
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Plausibility: The association is consistent with accepted biologic
knowledge

The evidence below is divided into sections on human and animal
data. Special attention is given to evidence that BP may act as an ad-
juvant to sensitize a host to other infectious agents.

Subclinical nasopharyngeal Bordetella pertussis colonization is
underreported and common

Subclinical BP infection rates are under-recognized, and SCBPC has
been documented across the age spectrum and in widely varying epi-
demiologic settings. In a highly (99%) vaccinated population in China
in 2011, during a period without a proximate BP outbreak, 4.8% of 629
asymptomatic children tested positive for BP by a single nasophar-
yngeal swab PCR [23]. A cross sectional study in 2015 reported 7.1% of
70 asymptomatic Iranian healthcare workers screened positive by na-
sopharyngeal culture for BP [25]. In a German sudden infant death
study conducted from 1995 to 1997, 5.3% of 441 subjects in the control
group were colonized with BP, as documented by nasopharyngeal swab
PCR [24]. The annual incidence of BP infection in a Dutch study con-
ducted between 1995 and 1996, as determined by serology in 3–79 year
olds, was 6.6%. In contrast, the yearly incidence of notified Dutch BP
cases was 0.01% [72], a ratio of estimated total cases to total reported
cases of 660 to 1. In a separate study in the Netherlands in 2006–2007
that screened for serologic evidence of BP infection, 9.3% of asympto-
matic subjects age 9 years and older had significantly increased levels of
anti-pertussis toxin IgG, suggesting BP infection during the past year
[73]. An Italian study documented serologic evidence of recent BP in-
fection with rates that increased from 9.3% (95% CI 7.5–11.1%) in
1997 to 14.1% (95% CI 11.4–16.8%) in 2013 [74], when rates of re-
ported BP infection had been well below 1% in all age groups, and
approximately .001% in those over age 15 [150]. Finally, in the 1999
US acellular BP vaccine trial, estimated rates of undocumented BP in-
fections for those age 15–65 years totaled 1 to 10 million cases an-
nually, depending on case definition [71] when the CDC reported ap-
proximately 7000 US cases each year (http://www.cdc.gov/pertussis/
surv-reporting/cases-by-year.html), for a ratio of reported to un-
reported BP cases of 1:140. Study data not presented, but reported in
Ward et al., indicated that the number of asymptomatic BP patients
with seroconversion surpassed the number of symptomatic patients by a
factor of up to 10, for a ratio of reported to unreported BP cases of
1:1400. In summary, a diverse medical literature from multiple popu-
lations documents unreported symptomatic and SCBPC rates far in ex-
cess of reported BP infection rates, and includes evidence from highly
vaccinated populations.

Human plausibility data in asthma and allergic sensitization
disease

A history of BP infection correlates with increases in total serum IgE
in children compared with age-matched controls, particularly in chil-
dren 3–12 years of age [151,152]. A statistically significant increase in
positive skin prick test results has been observed 8–14 months after
laboratory-confirmed acute clinical BP infection [152]. In addition, we
note again the long history of prior authors’ case series suggesting that
respiratory infection, including whooping cough, causes asthma
[146–149,153].

Consistent with plausibility, BP can cause “widespread mucus
plugging and extensive mucosal damage” as seen in postmortem studies
of infants with acute clinical BP, and lead to the production of viscous
mucus [117] — findings commonly observed in patients with asthma
[154]. Further, in an analysis of international cross-sectional studies
from 1995 to 2005 involving 54,943 schoolchildren aged 8–12 years,
acute clinical BP infection was associated with wheeze (adjusted OR
1.68; 95% CI 1.44–1.97), the classic finding of asthma [155].

Additionally, in a Finnish study of induced sputum or pharyngeal swabs
of asymptomatic adults with asthma, 28% of mild asthmatics and 20%
of moderate asthmatics tested PCR positive for BP, and BP positive
subjects had a lower ratio of forced expiratory volume in the first
second/forced vital capacity (FEV1/FVC) (77.1% vs. 80.7%, p= 0.012)
and more asthma symptoms (66% vs. 47% with symptom scores above
median, p=0.053) than BP negative cases [156]. Finally, using data
from the British National Child Development Study, a history of acute
clinical BP was associated with a 6 percent lower unadjusted mean
FEV1 and FVC compared to controls without BP [157].

BP-mediated host sensitization to co-localized infection and a
proposed role for SCBPC in type 1 diabetes

In preclinical models, BP and pertussis toxin sensitize hosts to in-
tranasally introduced viruses such as respiratory syncytial virus
[158,159]. Similarly, we propose that in humans, BP may serve as an
adjuvant for a range of nasopharyngeal co-localized antigens, including
infectious organisms such as rhinovirus [160], an established and
common trigger of asthmatic exacerbations [161–164]. Childhood BP
infection is coincident with an additional respiratory pathogen in
28–58% of cases [160,165] and in a prospective study of children with
at least one week of cough, the most frequent mixed infection occurred
between BP and rhinovirus, observed in 10% of patients [160].

Compared with other viral wheezing illnesses, rhinovirus infection
in young high-risk children predicts the subsequent development of
asthma [166,167]. Noting co-localization of BP infection with rhino-
virus [160] and the ability of rhinovirus to infect both the upper and
lower respiratory tract [168], we propose that SCBPC and SCBPC-se-
creted pertussis toxin act as adjuvants, sensitizing hosts to co-infecting
agents such as rhinovirus in the nasopharynx, leading to pulmonary
pathology consistent with asthma upon viral re-exposure in the lower
respiratory tract. In essence, we suggest that microbes to which a host
has been sensitized by BP or pertussis toxin, become aeroallergens and
trigger a hyperimmune host response in the airways once the aero-
allergen is subsequently inhaled.

Noting a 47% higher incidence of asthma in patients with type 1
diabetes (T1D) than controls in a nationwide Taiwan population-based
cohort study of 3545 T1D patients and 14,180 controls (adjusted hazard
ratio for asthma of 1.34 in T1D patients [95% CI=1.11–1.62]) [169],
we suggest that disease from nasopharyngeal BP-mediated sensitization
to a virus and viral re-exposure is not limited to respiratory infections
and pulmonary pathology. For example, we propose that BP-mediated
sensitization to co-localized coxsackievirus in the nasopharynx, sub-
sequent coxsackievirus re-exposure and localization to pancreatic beta
islets, and a host hyperimmune response to islet-localized coxsack-
ievirus leads to beta islet cell-specific inflammation and pathology
consistent with T1D as supported in greater detail below.

Given that both BP and coxsackievirus reside in the nasopharynx
[117,170], that coxsackievirus is pancreotropic [171], that human
pancreatic beta cells can harbor persistent coxsackievirus infections
[172], that coxsackievirus has been isolated from pancreatic beta islet
cells of children with acute-onset diabetes [173,174], and given that
despite this, several large-scale studies (which did not control for the
presence of SCBPC) have been inconsistent with respect to a causal link
between coxsackievirus and T1D [175], the pertussis hypothesis sug-
gests that mucosal SCBPC-mediated sensitization to coxsackievirus and
a subsequent hyperimmune host response to beta cell-localized cox-
sackievirus provides a plausible explanation for the pathogenesis of
coxsackievirus-associated TID. More specifically, we suggest that re-
search to understand the host-pathogen relationship in coxsackievirus-
associated T1D may need to control for the impact of nasopharyngeal
SCBPC-mediated host sensitization to coxsackievirus.

Similarly, we propose that pharyngeal co-localization of SCBPC with
insulin, such as that in cows’ milk formula [176], provides an oppor-
tunity for BP-mediated host sensitization to insulin resulting in
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inflammation specific to beta islet cells, where insulin is produced and
secreted. Adjuvant-mediated sensitization to insulin, including oral in-
sulin, and the subsequent onset of insulitis is well-established in animal
models [177,178]. As Toreson wrote nearly 50 years ago, “Islet lesions
in the diabetic rabbits immunized with insulin-adjuvant distinctly re-
semble the reported lesions of juvenile acute-onset diabetes in man”
[178].

In short, asthma and T1D comorbidity may be the result of a
common sensitizing agent, SCBPC. Like asthma, T1D rates have been
rapidly increasing in many developed nations in recent decades [179],
and we suggest that this rise is due, at least in part, to a concurrent
increase in SCBPC rates.

BP and pertussis toxin induce an immunologic profile seen in
asthma and allergic sensitization disease

Most asthma, including early-onset-allergic, exercise-induced, and
late-onset eosinophilic, is associated with CD4+Th2 activation and
increased IL-4 and/or IL-5 production [4], and IL-13 production [180].
Pertussis toxin can likewise activate Th2 host immune responses char-
acterized by increased production of IL-4, IL-5, IL-13, and im-
munoglobulins [50,181].

In addition, BP may induce a Th17-driven immune response
[182–184] characteristic of the mucosal immune response to bacterial
infection [185,186], and an emerging subset of neutrophilic asthma
[4,187–190]. BP adenylate cyclase toxin [183], pertussis toxin [184],
and BP lipopolysaccharide [182] can each independently induce a Th17
immune response.

Perhaps most notably, intranasal colocalization of pertussis toxin
and respiratory syncytial virus (RSV) leads to increased RSV-specific
IgG1, increased total serum IgE, elevated IL-4 in lung supernatants, and
augmented IL-4 production by splenic lymphocytes exposed to pertussis
toxin and RSV recall antigens. Noted the authors, “…coadministration
of PT [pertussis toxin] with RSV at the lung epithelium augments PT’s
adjuvant effects and suggests a PT-induced effect on the local cytokine
milieu leading to the altered composition of the RSV-specific immune
response…These results suggest that PT can influence the local pro-
duction of IL-4 to alter the humoral and cellular immune responses to
viral infection as well as to coadministered antigens.” [159]. In a sub-
sequent editorial, the authors remarked, “In separate experiments, we
showed that simultaneous intranasal delivery of PT and RSV produced a
robust type 2 cytokine response in the lung…” [191], corresponding to
the cytokine profile of many allergic diseases [192].

BP and BP toxins induce pulmonary remodeling in humans and
animals

Lung remodeling in asthmatics includes airway wall thickening with
smooth muscle hypertrophy and hyperplasia, epithelial hypertrophy,
and subepithelial fibrosis [193,194] and a subgroup of human asth-
matics manifests irreversible airway defects [194,195]. Although un-
derstanding of the relationship between pulmonary inflammation and
remodeling is developing and controversial, chronic airway inflamma-
tion may induce asthmatic bronchial remodeling in preclinical studies
[196], and it is well established that BP and pertussis toxin induce in-
flammation, even in nanogram quantities [117,197]. Human clinical
support for BP inducing permanent structural lung change includes
evidence from a cohort of adults (with no excess of physician-diagnosed
asthma) with a history of acute clinical pertussis by age seven. These
individuals have a statistically significant 6% decrease in forced vital
capacity compared with those without an acute clinical BP history
(p= .04), documenting the correlation between a fixed pulmonary
structural change and a history of acute clinical pertussis. Differences
between groups persist after treatment with albuterol, as expected for
fixed defects. Acute clinical pertussis-associated pulmonary remodeling
is to be distinguished from the potential for nasopharyngeal SCBPC to

induce allergen specific sensitization and resulting reversible allergic
airway disease manifested as asthmatic bronchospasm [157]. In sum,
we propose that, in addition to the reversible obstructive airway disease
due to allergic sensitization seen in asthma, BP may also be responsible
for the fixed structural remodeling reported in asthmatics.

In animal models of asthma, BP infection prior to sensitization leads
to “increased inflammation of bronchiolar walls with accompanying
hyperplasia and mucus metaplasia of lining epithelia” [198], similar to
asthmatic histopathology. Toxins released by BP induce marked re-
spiratory histologic changes, including extrusion and destruction of
ciliated respiratory epithelium by BP tracheal cytotoxin [199] and not
only is BP toxin associated with airway hyperresponsiveness, but it also
inhibits host mechanisms that attenuate airway inflammation [43]. At
the cellular level, pertussis toxin has been shown, in vivo and in vitro, to
induce cytoskeletal reorganization with increases in endothelial per-
meability, loss of integrity of cell-cell junctions, and “profound actin
cytoskeletal rearrangement and stress fiber formation” [200], while BP
tracheal cytotoxin in synergy with endotoxin inhibits DNA synthesis in
cultured tracheal epithelium [201]. Finally, in vitro studies demonstrate
that Wnt signaling modulates lung development, lung fibrosis, and the
proliferation and differentiation of multiple pulmonary cell types
[202]. Since pertussis toxin blocks several forms of Wnt signaling [203-
205], localized pertussis toxin from BP infection may contribute to
asthma via compromise of Wnt pathways.

Taken together, clinical, histologic, and cellular evidence demon-
strates that BP and BP toxins induce respiratory tissue injury and re-
modeling consistent with asthma.

Animal plausibility data for asthma and allergic sensitization

BP infection and asthma and allergic sensitization

BP and pertussis toxin are such potent adjuvants that sensitization
and anaphylaxis to ragweed pollen may inadvertently occur in mice
administered BP in late summer, when pollen is “in the air” (without
experimentally introducing antigen, but by unintentional exposure to
pollen in unfiltered air) [45]. In their landmark study, Chang and
Gottshall observed that mice that were intranasally administered BP
and then, 8 or 9 days later, exposed to concentrated aerosolized pollen
or unfiltered outside air contaminated with pollen (“windows wide
open”), became sensitized to pollen. The investigators warned that
“when using pertussis organisms as an adjuvant for sensitizing mice,
precautions must sometimes be necessary to avoid producing anti-
bodies against inadvertently administered airborne antigens.”

An earlier murine study by the same investigators similarly de-
monstrated that inhalation of aerosolized albumin after an established
BP colonization infection led to albumin sensitization and to pathology
upon albumin re-exposure [49]. The pertussis hypothesis asserts that
above and beyond laboratory experiments, this is precisely what in-
itiates a substantial number of human asthma and allergic rhinitis cases.
That is, as illustrated in Fig. 2, an individual infected with nasophar-
yngeal SCBPC becomes sensitized to airborne antigens such as pollen
when that antigen is co-localized with SCBPC and SCBPC-secreted
toxins. Once sensitization has occurred, the antigen becomes an al-
lergen to the sensitized host such that allergen re-exposure upon in-
halation leads to a hyperimmune host airway response, with attendant
intranasal inflammatory pathology in the case of allergic rhinitis, and
bronchiolar inflammatory pathology in the case of allergic asthma as
illustrated in Fig. 3.

In addition to laboratory experiments using pertussis toxin as an
adjuvant to induce asthma and allergic sensitization disease
[41,42,45,46,52,53], inhaled virulent BP has been shown to sig-
nificantly exacerbate adjuvant-mediated allergen-induced asthma in
mice [198]. In a rodent model of allergic asthma, aerosolized virulent
BP increased asthmatic histopathology and airway hyperreactivity after
ovalbumin (OVA) sensitization, compared with uninfected control
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mice. OVA sensitization was achieved through intraperitoneal OVA
injection with an aluminum-based (non-BP) adjuvant. BP infection-as-
sociated changes included increased peribronchiolar leukocyte in-
filtration, epithelial hyperplasia, mucus metaplasia, and increases in
BAL fluid IL-10 and IL-13 [198]. These findings demonstrate that, be-
yond induction of sensitization, virulent BP may exacerbate airway
pathology in allergic asthma.

Using the same model, investigators later demonstrated that both
whole-cell pertussis (wP) vaccination [47] and acellular pertussis (aP)
vaccination [48] protect against BP infection-induced exacerbation of
OVA-induced asthma, decreasing immunopathologic changes and
airway hyperactivity, compared with controls. Of note, while both aP
and wP vaccines may induce protective systemic immunity to reduce
pulmonary injury during virulent BP exposure, neither aP nor wP in-
duce potent mucosal immunity [61,76] and are therefore not antici-
pated to prevent BP-mediated asthma secondary to SCBPC (i.e. allergic
asthma from nasopharyngeal SCBPC-mediated sensitization to co-lo-
calized antigens and subsequent re-exposure to those antigens upon
inhalation).

In sum, sensitization models utilizing BP and pertussis toxin span-
ning over four decades demonstrate pertussis-induced sensitization to
inhaled allergens [45,49], bronchial hyperresponsiveness [41,47,50],
broncho-alveolar lavage (BAL) allergen specific IgE [42], BAL eosino-
philia [42,46], and BAL IL-4 and IL-13 [50], all changes which are
characteristic of asthma [180,206,207].

Overview of plausibility

A summary of the pertussis hypothesis is illustrated in Figs. 2 and 3.

Specificity: The cause is associated with a single type of disease in
a defined population

We propose that multiple diseases are associated with SCBPC, and
have previously proposed the potential role of BP-mediated sensitiza-
tion in multiple sclerosis [20] and celiac disease [21]. The specific form
of BP-associated disease (e.g. asthma, multiple sclerosis, celiac disease)
is dependent not only on the presence of SCBPC, but on the presence of

additional necessary causes, such as genetics and the co-localization of
nasopharyngeal SCBPC with particular allergens such as pollen or
gluten. In real-world multifactorial disease, the heterogeneous dis-
tribution of disease risk factors attenuates Hill’s proposed specificity of
effect, and we do not expect that SCBPC risk will exclusively correlate
with allergic sensitization disease risk. Specificity is predicted to the
degree that only the necessary causes of a particular disease are present.
Conversely, we propose and the evidence presented supports, that there
are circumstances when more than one set of sufficient causes for dif-
ferent BP-associated diseases are comorbid, such as atopy and asthma,
celiac disease and asthma [208], and multiple sclerosis and asthma
[209].

Coherence: The association does not conflict with accepted
biologic knowledge

Hill’s inclusion of both plausibility and coherence acknowledge that
both consistent and inconsistent data may exist for a hypothesis.

Anticipated concerns

BP may be assumed to be too uncommon to cause asthma and allergic
sensitization

Questions regarding coherence may arise from an under-
appreciation of the well-documented incidence of subclinical BP in-
fection [26,71,156,210–212]. As previously noted, using subclinical BP
rates from a large US vaccine efficacy trial in the late 1990s [71]
(wherein biases are minimized by the prospective study design in-
corporating scheduled clinical and biologic assessments) and com-
mensurate reported BP rates from the CDC (http://www.cdc.gov/
pertussis/surv-reporting/cases-by-year.html), the ratio of reported BP
infection to unreported subclinical BP in the US was estimated to be
1:140 to 1:1400. Therefore, current increases in reported BP, while
garnering attention as a threat to public health for the burdens of
whooping cough [213], likely denotes a far greater rise in SCBPC and,
as proposed, SCBPC-associated disease risk. The causal connection be-
tween BP and the rise in asthma as seen in Fig. 1 has not previously

Fig. 2. Initiation of pollen sensitization: nasopharyngeal co-localization of BP and pollen. Aerosolized BP from the cough, sneeze, or exhalation of a BP-infected
person (not shown) are inhaled into the nose of an individual (shown) and may attach to ciliated respiratory epithelium along the nasopharyngeal path of airflow.
Pollen may follow a similar inhaled path and co-localize with BP which secretes pertussis toxin. As BP and pertussis toxin are potent adjuvants, co-localization of BP
and pollen can lead to adjuvant-mediated host sensitization to pollen, including activation of antigen presenting cells (APC), which phagocytize mucosal pollen and
then present pollen epitopes on APC surfaces, eventually presenting pollen epitopes to other immune cells leading to host sensitization (see Fig. 3).
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been suggested, and is incompatible with the conventional perception
of acute clinical BP infections. As recently as 2005, it was written that
“Clinically, the full spectrum of disease due to B. pertussis infection is
now understood.” [117] We propose that incoherence is resolved with
an appreciation of the magnitude of SCBPC, the established role of BP in
sensitization models including experimental animal models of asthma,
and the potential etiopathogenic role of SCBPC in asthma and allergic
sensitization.

We embrace a multicausal model of disease and do not propose that
all disease phenotypically grouped with asthma and related allergic
disease requires BP. Some proportion likely requires other microbes or
exogenous causes for disease. For example, various animal models of
asthma and allergic sensitization may also be induced without adjuvant
[214], BP or pertussis toxin, or by using complete Freund’s adjuvant
[215], which contains heat-killed Mycobacterium tuberculosis [216].

BP rates do not always correlate with asthma and allergic
sensitization disease rates

Coherence may also be questioned if SCBPC is scrutinized as the
only necessary cause for a BP-associated disease, ignoring other com-
ponent causes distinct from BP. The population variance of the full
complement of necessary causes, including exposure to environmental
antigens, dictates the population incidence of allergic sensitization
disease. Further, in a multicausal model, diseases may have multiple
sets of sufficient cause. In sum, incoherence may be anticipated with
univariate analysis of SCBPC as the only necessary cause of multicausal
diseases such as asthma and allergic sensitization.

Finally, the relationship between BP incidence and proposed BP-
associated disease is non-linear, which may confound initial expecta-
tions. While BP incidence positively correlates with asthma and allergy
rates in lower BP incidence environments where BP vaccination rates
are relatively high like the US, asthma and allergic sensitization disease

rates inversely correlate with BP incidence in environments where BP
incidence is high enough to facilitate latent BP immunization. That is,
we propose that in populations where vaccination rates are high and
circulating BP rates are low, each additional exposure to BP increases
the risk of SCBPC. Conversely, in populations where vaccination rates
are low and circulating BP rates are high, each additional BP exposure,
rather than leading to SCBPC, is more likely to lead to latent im-
munization with attendant enhancement of mucosal and systemic BP
immunity (a “boosting” effect). Latent immunization, in turn, is held to
reduce the risk of SCBPC and allergic sensitization, consistent with the
lower rates of asthma found in immigrants to New York City from lower
GNI nations [95] (see related case study above). Apparent incoherence
is resolved with appreciation of the differentiated impact of environ-
mental BP exposure, state of mucosal BP immunity, and risk of SCBPC,
a proposed major cause of asthma and allergic sensitization disease.

Experiment: The association can be altered by manipulation of the
cause

Human experimental data

As previously noted, in the randomized controlled human trial in-
vestigating the effect of BP vaccines on atopic disease, Nilsson et al.
observed a statistically significant risk increase in asthma by 2.5 years
of age in children with a history of acute clinical BP, compared with
those without a history of acute clinical BP (19% vs. 9%, p= .03)
[138].

Further, as reviewed in the first case study above, a malevolent
political decision in the latter decades of the twentieth century led to a
large-scale unintended human experiment with the rise and fall of the
Berlin wall. The wall divided a German population with common ge-
netic and cultural ancestry into regions that adopted divergent BP
vaccination, immigration, emigration and visitation policies. By

Fig. 3. BP-mediated host sensitization to pollen and the etiopathology of asthma. APCs activated by nasopharyngeal BP and pertussis toxin (as shown in Fig. 2), and
presenting pollen epitopes, migrate to and enter local lymph nodes (short dashed line) where they encounter naïve CD4+T cells. This encounter leads to the
transformation of naïve CD4+T cells into antigen-specific effector CD4+T cells which are hyperresponsive to pollen (short black line), and thus a host (shown) is
sensitized to pollen. Pollen-specific effector CD4+T cells then perform antigen-specific immune surveillance by hematogenous and lymphatic routes (long black line)
seeking to find and bind pollen, which in this case has been inhaled by the host and localized to the lungs (long dashed line). When pollen-specific effector CD4+T
cells encounter pollen in the lungs, a hyperimmune response is generated, leading to the release of inflammatory cytokines, activation of B cells and release of IgE,
mast cell degranulation, the release of inflammatory mediators such as tryptase and leukotrienes, and airway hyperresponsiveness and injury that clinically presents
as asthma.
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maintaining higher BP vaccination rates and limiting BP importation
compared with FWG, FEG experienced low rates of BP prior to the fall
of the Berlin wall, followed by higher rates of acute clinical BP (and as
proposed in detail above, SCBPC) with the influx of BP upon German
reunification in 1990. Serial data obtained over the next decade from
East German children documented statistically significant progressive
increases in asthma (both clinically diagnosed and as documented by
pulmonary function testing), as well as increases in eczema and strong
sensitization to any allergen [64,65].

Animal experimental data

As noted earlier, multiple animal studies have used BP in sensiti-
zation models of asthma [41,42,46]. BP and pertussis toxin may also
serve as adjuvants in allergic disease models, including anaphylaxis
[52,54,87,217,218]; ovalbumin [46–49], house dust mite [42,50] and
pollen sensitization [37,45]; and food allergy [40,53,219,220].

Analogy: The association is analogous to another association that
is accepted as causal

It is widely recognized that subclinical human infections may lead
to a variety of chronic immune- and toxin-mediated disease. For ex-
ample, H. pylori can cause peptic ulcer disease [221]. The role of H.
pylori in peptic ulcer disease is analogous to BP in asthma in that H.
pylori colonizes the mucus layer (in this case, of gastric mucosa as op-
posed to respiratory epithelium) [222], may adhere to the epithelium
[223], and causes disease through the release of enzymes [224] and
toxins [225], or by eliciting an immune response [226].

Conclusion

With the pertussis hypothesis, we propose that SCBPC may be an
important cause of asthma and related allergic disease, consistent with
epidemiologic phenomena such as the rise in rates of asthma and al-
lergic sensitization in FEG after the fall of the Berlin Wall; the increase
in the incidence of asthma, peanut allergy, and anaphylaxis in the US in
recent decades; the correlation between rates of asthma and per capita
GNI of one’s country of birth; the lower risk of asthma and allergy in
children raised with pets and on farms; and the reduced risk of atopy
with increased family size and later sibling birth order. Using the
Bradford Hill criteria to assess causation from association, we find the
relationship between SCBPC and allergic sensitization disease is strong,
as measured by the increased relative risk of asthma in young children
with a history of BP infection, consistent across varied populations and
time, temporally logical in both human and animal data, and exhibits a
biologic gradient as reviewed in data from East Germany and the US.
Furthermore, a role for SCBPC in asthma and other allergic disease is
biologically plausible and consistent with current knowledge given not
only the widespread documentation of SCBPC particularly in highly BP-
vaccinated populations, but also the potent adjuvant sensitizing effects
of BP and pertussis toxin, widely documented and supported by dozens
of animal and human experiments as reviewed herein. Finally, the
SCBPC-asthma/allergy disease model is analogous to other models
widely accepted as causal, such as the role of H. pylori in peptic ulcer
disease.

Ultimately, our review of the evidence for the pertussis hypothesis is
a call for further study. Notably, a controlled BP colonization and im-
munity study, including intranasal swab and nasal wash assays has
recently been approved for human investigation [227]. Further pro-
bative investigation may begin with (1) longitudinal surveillance with
nasal swab or nasal aspiration PCR and serum antibody studies for
SCBPC starting in infancy or early childhood, with cohorts followed for
the development of physician-diagnosed asthma and allergic sensiti-
zation, testing all patients prospectively on a predefined schedule, (2)
randomized controlled trials of regular nasopharyngeal irrigation,

which is generally regarded as safe and effective for acute and chronic
rhinosinusitis [228], to minimize SCBPC and reduce the risk of allergic
sensitization disease, and (3) ascertainment of BP and BP markers in
nasopharyngeal (e.g. PCR) and serum (e.g. pertussis toxin IgG) samples
from patients with new-onset anaphylaxis, with patient and microbial
controls.

We suggest that reducing SCBPC-mediated disease, including
asthma and allergic sensitization, will optimally require the develop-
ment of next generation BP vaccines that induce potent mucosal BP
immunity and thereby prevent subclinical BP colonization. With the
implementation of such vaccines, randomized controlled trials are
likely to definitively determine the role of SCBPC in the pathogenesis of
asthma and allergic sensitization disease. Until then, it is our hope that
the evidence presented herein encourages further exploration of the
pertussis hypothesis and the potential role of subclinical BP colonizing
infections in the onset of human disease.
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